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On nose separation 
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When solving for three-dimensional laminar and turbulent boundary layers on smooth 
bodies of revolution at incidence, one has to contend with a difficulty near the nose 
where the usual formulations of the governing equations are singular. A transforma- 
tion of the co-ordinate system is described which removes this singularity and enables 
the solution to be carried smoothly around the nose. A further difficulty arises if the 
body is slender and i t  is also shown how this may be overcome. As part of our con- 
tinuing studies of this problem for both laminar and turbulent flows, we compute the 
laminar boundary layers on the line of symmetry for thin bodies taking the prolate 
spheroid as a paradigm. We show that if the angle of incidence a is less than 41°, 
separation never occurs a t  the nose no matter how thin the body. In  contrast, the 
value of a which provokes separation a t  the leading edge of a two-dimensional airfoil 
tends to zero with the thickness ratio of the airfoil. 

1. Introduction 
This paper describes one phase of the work done towards the development of a 

general boundary-layer method for calculating three-dimensional boundary layers on 
bodies of revolution at incidence. In  this paper we address ourselves to the problem 
of computing boundary layers near the nose region and with the onset of leading-edge 
separation; this is important for the calculation of transition by stability theory and 
for the prediction of downstream flow properties including possible separation. 

It is well known that separation bubbles can develop near the forward stagnation 
point of a thin, two-dimensional, plane airfoil a t  quite small incidences. This pheno- 
menon was first described by Jones (1934) and later Gault (1955) carried out an 
extensive experimental study. Once separation occurs, some new features of the flow 
occur, including long and short bubbles, transition to turbulence and bursting. A 
review of the developments has been written by Tani (1964) and later Gaster (1966) 
reinforced Gault’s conclusion that when separation takes place a noticeable interaction 
occurs between the boundary layer and the mainstream. The theoretical treatment 
of the interaction is of special interest to aerodynamicists and an important con- 
tribution has been made by Briley & McDonald (1  955) who interacted the boundary- 
layer and inviscid equations over the majority of the flow field but used the full 
Navier-Stokes equations in the neighbourhood of separation. By these means they 
were able to avoid the Goldstein (1948) singularity which is an inevitable feature of 
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classical boundary-layer theory at separation when the pressure gradient is prescribed. 
We are interested, in this paper, in the problem of leading-edge separation from the 
rational standpoint of an asymptotic expansion of the solution of the Navier-Stokes 
equation in descending powers of the Reynolds number in which it seems likely that 
the angle of incidence, that just provokes separation, tends to zero with the thickness 
ratio t of the airfoil. Further, it appears that while the boundary-layer assumption 
remains true so long as separation does not occur, once it does, the singularity inevitably 
appears. The correct limiting solution, as the Reynolds number based on the leading- 
edge radius lead to infinity, is then of a different form and most likely given by the 
Kirchhoff-Sychev theory, see Smith (1977, 1979), in which a free streamline springs 
from the airfoil at the maximum slip-velocity on the airfoil and may never reattach. 
The present study is concerned mainly with determining the boundary-layer pro- 
perties when separation does not occur and to finding the critical angle of incidence 
which just provokes separation. 

The corresponding problem for bodies of revolution has received less attention but 
there have been a number of important studies by Wang on the laminar boundary 
layers on prolate bodies of revolution which have an important bearing and to which 
we shall refer in detail throughout this paper. The results of his researches are sum- 
marized in a recent review, Wang (1976). For example, he has shown (Wang 1970, 
1975), that, for the thickness ratio t = 4, separation on the leeside of the line of sym- 
metry occurs near the rear of the body for angles of incidence a < 40’ but that at larger 
values of a a new separation develops very near the nose. The reason is essentially 
similar to that for two-dimensional flows, it is due to the high curvature of the nose. 
There is a local velocity overshoot followed immediately afterwards by a short adverse 
pressure gradient as the main stream returns to a value approximately equal to that 
a t  an infinite distance upstream. If this gradient is insufficient to provoke separation, 
then the boundary layer continues to develop smoothly until, near the rear stagnation 
point, it  encounters a sufficiently severe gradient to compel it to  separate. Otherwise 
the boundary layer breaks down near the nose and as in two dimensions no further 
progress appears to be possible on a rational theory. It may well be that a free-stream 
surface then springs off the body but there is much less certainty than in two dimensions 
about the flow properties once classical theory breaks down. 

The remainder of the present paper has been prepared in five sections. The equations 
appropriate to general prolate spheroids are considered in the following section and 
those for thin prolate spheroids in Q 3: a co-ordinate system appropriate to the nose 
region and transformations appropriate to the line of symmetry are considered in 
subsections of 3 2. In  this paper particular attention is devoted to the ‘line of sym- 
metry’ equations for the finite and zero-thickness cases. Results are presented in 
$ 4  which also includes parallel results for thin two-ciimensional airfoils. The paper 
concludes with a comparative discussion in Q 5. 
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FIGURE 1. Notation for prolate spheroid at incidence. 

2. Formulation for prolate spheroids 

2.1. Basic equations 

For a prolate spheroid at  incidence (see figure l), the governing boundary-layer 
equations for an incompressible laminar flow in a curvilinear orthogonal co-ordinate 
system are given by the following equations: 

a a a 
ax aY 

Continuity - (h, u) + (h, w) + - (h, h, V )  = 0; 

Here h,, h, are metric coefficients defined by 

where t denotes the thickness ratio (=b /u )  of the elliptic profile. The parameter 
K,/a is the geodesic curvature of the surface lines c( = x / u )  = const. and is given by 

The solution of the system (I)  to (5) requires boundary conditions and initial 
conditions. The boundary conditions are: 

y = o ,  u = v = w = o ;  

y - f c ~ ,  U-+u, (x ,o ) ,  w+w,(x,e). (6) 

The velocity components u, and we can be obtained from inviscid theory, (Hirsh & 
Cebeci 1977), being given by 

(7 a) 
- ue. = &(t)  ~osacosp-V,,(t)sinccsin/3cosf3, 
urer 

3 = Go(t) sin a sin 8. 
Urei 

Here p denotes the angIe between the line tangent to the eIliptic profile and the 
positive & axis and given by 
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The parameters K(t )  and &,(t) are functions oft, defined by 

The initial conditions in the longitudinal direction can be calculated by takirg 
advantage of the symmetry conditions. Noting that the circumferential velocity in 
the boundary layer and the circumferential pressure gradient are identically zero on 
the line of symmetry, we differentiate this equation with respect to 6 to obtain the 
so-called attachment-line equations in the longitudinal direction: 

where we = aw/ae. These equations are subject to the boundary conditions: 

The specification of the initial conditions in the circumferential direction is not 
quite so easy when body-oriented co-ordinates are used because of the singularity in 
the properties of h,, h, and K ,  a t  the nose ([ = - 1 ) .  A common approach used to 
circumvent this unpleasant geometric singularity is to revert to an approximate 
procedure by first performing the integration along the line of symmetry from the 
stagnation point as near to the nose as possible, then jumping around the body along 
the line Zi to the same value of x on the leeward side (6 = n) as shown in figure 1. 
Afterwards, the solution may be extended to more general points on the body. Such a 
procedure, while effective at moderate values of a and/or t leads to difficulties and to 
inaccuracies as a increases and t -+ 0. These difficulties can be overcome as described 
in $4 2.2 and 3.  

An alternative procedure is to use a co-ordinate system on the body surface based 
on the streamlines of the external flow. The possibilities were explored by Cebeci et 
al. ( 1  973) who noted that a new system would be needed for each value of a and if the 
fluid is compressible for each Mach number. Further the generation of the co-ordinate 
lines is very difficult near the nose and the stagnation solution of the boundary-layer 
equations become singular in these co-ordinates. They abandoned the method but 
later Geissler (1974) reported some successful computations including a portion of 
the separation line at a = 1 5 O .  
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2.2. Nose reg& w-ord~nates 

The difficulties and inaccuracies associated with generating initial conditions in the 
circumferential direction caused by the singularities in h,, h, and K2 at f; = - 1 can be 
avoided by using a suitable transformation in the vicinity of the nose. We define new 
velocity components U, W, V by 

u = U case+ Wsine, ( 1 4 4  

w = Wcose- UsinO, v = V/ta, (146) 

X = SCose, Z = Ssine, Y = y / t .  (15) 

and new co-ordinates X, Y ,  Z by 

Here S is a parameter, which is a function of f; only, and defined in (20) below. 
The purpose of the above transformation is to convert the polar form of equations 

(1) to (3) near the nose into a quasi-rectangular Cartesian form which is free of singu- 
larities. The basic reasoning behind this transformation can be appreciated by noting 
the advantages of solving the Laplacian near the origin in the form a2/ax2+a2/ay2 
compared with a2/&2+ ( l / r )  a/& + ( l /r2)  a2/aO9. By means of this transformation it 
can be shown, after considerable algebra, that equations (1) to (3) reduce to 

au aw av 
N ( - + - )  ax az + ay - L( ux + WZ) = 0, 

au aau 

aw a2w N u-+w- -Lu(wx-uz)+v---=~2+v- ( ;: aw) az ay ay2 * 

N u -+ w - + L W( wx - UZ) + vfl =/& + Y a y 2 ,  ( ;: ;:) 

Here p, and B2 are pressure-gradient parameters defined by 

A =  +LW,(W,X-U,Z), 

the function S is obtained by integrating the expression 

dS [i + f;'(t2 - 1)]4 h, dx a[ = - _ -  
S -  t (1-t2)  h2 

subject to S = O at [ = - 1; and 

Along the line of symmetry, equations (16) to  (18) become: 

N ( g + % ) + g - L u x s  0, 
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au au a g u  

ax aY a ~ 2 ’  
N U - +  V - = j?: +v- 

and 

where W, denotes a W p Z  and the pressure-gradient parameters j?: and /?$ are now 

/31* = NUe- av, /?z* = N (v, 3 + Ge) - Lv,(w,, x - K). (25) ax ’ 
The appropriate boundary conditions are: 

I Y=O,  u=v=wz=o; 
Y+m, U - + R ( X ) ,  W,+W,,(X). 

At the stagnation point, So, where both U and W are zero, the governing equations 
(22) to (24) and their boundary conditions (26) reduce to: 

N(U,+W,)+Vy = 0, (27) 

In  equations (28) and (29), the pressure gradient parameters j?: * and /3$ * are 

/9f* = N U S , ,  $$* = NW;,. (31) 

2.3. Line of symmetry transformation8 
To solve the line of symmetry equations, we find it convenient to use a transformation 
which we employed in our previous studies (Hirsh & Cebeci 1977). For the nose-region 
equations given by (22), (23), (24) and (26), we let 

and introduce a two-component vector potential (Q,, $) such that 

In  addition, we define dimensionless functions F and G by 

@ = cv,,, V C ) @ ( X ,  ?*), Q, = (Urer 4 4  (3x9 Y*)Y (34) 

where Uref and c are respectively a reference velocity and length introduced for con- 
venience of comparison with Hirsh & Cebeci (1977); both are unity throughout this 
paper. The line of symmetry equations for the nose region may now be written as 
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(35) 

G"' - N(G)a + LF'(G'X - F')  + G''(NG - L F X )  = N 

where primes denote differentiation with respect to q* and 

The boundary conditions (26) become 

q* = 0, F =  F ' =  G =  a'= 0; 

3. Formulation for slender prolate spheroids 
As we shall see later, i t  is desirable and convenient to study the boundary layers 

on very slender prolate spheroids, i.e. t+O.  To obtain the governing equations 
appropriate for such bodies, we use the co-ordinates (14) and (15) and define 

Then we take the limit t -+ 0, holding p and S finite. After some algebra, we obtain the 
following equations: 

(40) 

(41) 

(42) 

aau 

aaw 
a Y2 

Here 

and U, is the limit of u, cos 0 - w, sin 0 as t + 0, i.e. 

p X  cos a - - 2  ( l-- '7) sin a. 
S( 1 +p2)4 

v,= 
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sin a. 
pZcosa 2XZLp +- 
S(l+p2)* s 

Y = O ,  U = V = W = O o ;  

Y+m, U+U,, W+K.  

K =  

The boundary conditions satisfied by U ,  W ,  V are: 

I 

(43f 1 

(44) 

These equations are explicitly independent of t and moreover are free of singularities 
at p = 0. It can be expected therefore that the solution is also quite smooth and in 
particular at the nose, now defined by X = 2 = 0, the numerical integration presents 
no difficulties. It is interesting to note from (43a)  that a finite value of 8 corresponds 
to a finite value of p ,  with S / p  + 1 asp -+. 0, and hence from (39) to a distance from the 
nose O(t2). The set of equations (40), (41), (42) is appropriate therefore within a 
distance from the nose of general axisymmetric thin smooth bodies of the order of the 
radius of curvature there. 

To obtain the line of symmetry equations for the system given by (40) through 
(42) and (44), we define 

(45) 
W = Zexp[1-(1+p2)*]Wl(X, Y)+o(z3) .  

We allow for negative values of X by permitting p to take negative values. When 
p < 0, the sign of S in (43a) must be changed and generally z = Ssgnp in the limit 
2-t 0. Near the line of symmetry the longitudinal and transverse components of 
velocity in the boundary layer are 

1 u = U,(X, Y )  + 0(Z2), V = K ( X ,  Y )  + O(ZZ), 

and 

respectively. We now substitute (45) into (40) to (42) and take the limit Z-tO, 
obtaining the equations 

with boundary conditions 
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Here 

and 
p cos a- 2 sina 

( l+p2)*  ' 
u, = 

[( 1 +p2)6 + 11 cos a + 2p sin a 
(1 +P2)4 

Ke = 

In  order to put the above equations into a more convenient form (see $ a), we now 
define 7 and by 

and write the continuity equation (47) and the two momentum equations (48) and 
(49) as 

avo a7 
- + - + u 1 U o + u 2 ~  = 0, 
aP a7 

avo -avo a2uo u -+ v- =p:+-, 
O aP all ar2 

aw, - aw, azw, 
O aP a7 

u --u3U0W,+tZ2 w;+ u;+ v- = p; +-. 
Here a,, a, and a, are functions ofp and are given by 

P P 
u3 = ( i+p2)*+(1+p2)t+l '  

The pressure-gradient parameters on (55)  and (56) are 

154) 

and the boundary conditions (50) remain unaffected, except that now Y is replaced 
by 7. At the stagnation point, (54), (55)  and (56 )  become 

(69) 
a V  
a7 

u1+ -++a ,% = 0, 

and 

- au awl uq+ v l =  /J1+Y--  
h 

-8%- azw, 
a2Wq+V--#8,+Y- 

a7 Q2 ' 



4. Results 
In this paper we concentrate on the solution of the line-of-symmetry equations for 

the cases of finite thickness and 'zero' thickness and as a function of the angle of 
attack using the numerical method described in Cebeci & Bradshaw (1977). The 
solution of the equations off the line of symmetry for both cases is still in progress 
and will be reported 1ater.t 

4.1. Asymptotic theorg for zero-thickness ca8e 

It is appropriate to consider some general properties of the solution before the 
presentation of the numerical results for the line-of-symmetry equations for the 
zero-thickness case. The solution starts a t  the stagnation point where we solve the 
equations given by (59) to (62)  and the solution is an example of the stagnation flow 
studied by Howarth (see Brown & Stewartson 1969). On the windward side, p increases 
and the solution of (54 )  to (56 )  can be expected to approach a simple asymptotic form 
as p-+co. Now as p+co, i.e. far from the nose on the windward side, it  is consistent 
to assume that all dependent variables become independent of p and we have, with 

7 = --yp0(111), K- uo = Yi(7/lY (66) 

(67)  

and primes denoting differentiation with respect to 7, 

u," +Yo u; = 0, 

where 

and 

Yi"+Y,Y; -(Y6)2+(2sina)2 = 0, 

YO(O) = YA(0) = UO(O) = 0 

Yh(co) = 2 sin a, Uo(co) = cos a. 

Thus the asymptotic solution on the windward side is essentially the same as that for 
a forward stagnation point in two dimensions together with a transverse boundary 
layer due to a uniform 'crossflow'. The roles of crossflow and mainstream seem in 
fact to be reversed for our problem: W is the crossflow and is proportional to Yi 
when p > 1 [see equation (46 ) ] .  Suitable properties of the asymptotic solution which 
may be compared with numerical results include 

UA(0) +- 0-5788(2 sin a)& cos a, ( 7 0 )  

t A preliminary account of this work is given in Cebeci, Khattab & Stewartson (1979). 
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W;(O) 4 1.2326(2 sin a)* + 0.5788 cos a(2  sina)), 

A1 = O0 (V, - U,) d7- j  1.016(2 sin a)* cos a, 
0 

445 

(71) 

A2 = 1 OD (K - W,) dy+Al + 0.647912 sin a)& (73) 
0 

asp+-,co. 
On the leeward side, we integrate in the direction of p decreasing and once we are 

past the nose, so that p is negative, either aU/a?j vanishes at  some finite value ps(a)  
of p or it reaches a (negative) maximum (see figure 5) then decreases again. In  the first 
case a singularity develops a t  p = p8 (see Brown & Stewartson 1969) and in the second 
the solution can be continued to all negative values of p and there is a consistent 
asymptotic form which it approaches as p -+ - co. This form is in two parts. Near the 
body (7 - 1) we write, for large negative values of p ,  

7 = - @0(7), W,+ u, = @;(7), (74) 

so that from (46) -& gives the cross-flow velocity W .  Then Qo satisfies the same 
differential equations as Yo, and U, satisfies (67) and (68). The boundary conditions 
are also the same as (69) but some comment is needed about Q;(m). According to 
(52) &(a) should be equal to - 2sina but it is well known that (67) and (68) do not 
then have a solution. The solution of this apparent contradiction is to be found in 
Proudman & Johnson's study of the unsteady boundary layer near the rear stagnation 
point of a two-dimensional bluff body (Proudman & Johnson 1962). This asymptotic 
solution may easily be adapted to our problem with p playing the role of time. The 
appropriate boundary condition to complete the specification of (75), (77) is then 

@;(XI) = +2sina (75) 

which means that near the body Wlcos 8 > 0 and so the boundary layer behaves on 
the leeside and windward sides in essentially the same way - fluid is being carried 
along the line of symmetry and nearby the streamlines are curved away from it so 
that fluid is also moving out of the symmetry plane. Also apart from the obvious 
change in sign of U;(O), the properties (70) and (73) are the same on the leeward side. 

As 7-+00, U,+-cosa and W,+U0+2sina whereas it should be -+-2sinu. The 
adjustment of this boundary condition takes place over a length scale in 7 which is an 
exponentially large function of p and in which viscous forces can be neglected and U, 
may be regarded as sensibly constant. We write 

6 = vexp(2ptana), (76) 

7 = 2sinae--2ptmaP(g), Wl+Uo = -2sinaF((),  (77) 

where primes now denote differentiation with respect to 6. On substituting into (54), 
(56) we obtain 

with boundary conditions 
( P - [ ) P "  = F ' 2 -  1 (78) 

F'+l as  XI, P(0)  = 0, (79) 

to match up with the prescribed mainstream conditions and with the inner solution 
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(74) valid when n N 1 and hence when 5 < 1. Specifically we notice that F(0)  = 0 
implies P'(0) = - 1. The solution of (78) is 

where c is a constant dependent in some way on the history of the boundary layer for 
finite p and determined by matching with the numerical computation. Reference may 
be made to Proudman & Johnson's paper for details of the arguments leading to the 
choice of the scaling law (78) and discussion of various alternatives. 

A possible interpretation of this result is as follows. There is a curve C on'the 
paraboloid, symmetric with respect to the leeward line of symmetry 1 and open as 
p - f - - G O  on which the crossflow skin friction is zero. The limiting streamlines (or 
skin-friction lines) of the boundary layer all start from the stagnation point So and 
two of them are the windward 1, and leeward 1 lines of symmetry. Limiting streamlines 
initially inclined close to 1, move away from it as S increases ultimately asymptoting 
to C when 0 N 105" (see Cebeci & Bradshaw 1977) corresponding to the separation 
angle for a circular cylinder. The other limiting streamlines also move away from 1, 
and, once the nose is passed, towards I ,  but eventually they must cross C when they 
turn back towards l,, but never reaching it of course. Instead they either asymptote 
to C from the other side as p -f - co or generate a separation line at  finite values of p .  

A surface X can also be defined, standing on C, on which the cross velocity is zero. 
One of its principal properties is that its height increases exponentially as p + - (13. 

Streamlines in the boundary layer initially above the limiting streamlines in the 
neighbourhood of lw are directed away from the paraboloid and this line and pass 
above 2. Other streamlines also move initially towards 1 and away from the body 
but once they cross X the crossflow velocity is reversed and they begin to move back 
towards 1,. Further if they are sufficiently near the body their outward motion is 
temporarily also reversed, but not at Z. Eventually they will again move away from 
the body and are likely to end up asymptoting the inside of X or some separation 
surface. Thus, the general shape of the Streamlines is spiral although it is unlikely 
that more than one revolution is completed. Complications would arise if the stream- 
lines formed internal envelopes but evidence is lacking in support of these possibilities. 

4.2. The two-dimensional airfoil 
The equivalent results for the boundary layer near the nose of a two-dimensional 
bluff body are obtained in a more straightforward way than for bodies of revolution, 
but the fundamental equations take a little more space to derive because a suitable 
reference is lacking. We begin by considering the inviscid flow past an ellipse at an 
incidence a with circulation 2 n ~  (neglected in 3 2). We define (x, y) as Cartesian 
co-ordinates with origin 0 at the centre of the ellipse Ox along the major axis and Oy 
along the minor axis. Then, according to complex variable theory, the complex 
potential for attached flow is 

w = 5 e-idL + 5-1 eia + i~ log 5, z = 5 + c2/5, (81) 

where w = # + i$, $ is the stream function of the flow and z = x + iy. In  this solution 
the circle 5 = - eTis corresponds to the ellipse x = - (1  + c2) cos 8, y = (1 - c2) sin 0 and 
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non-dimensional variables are used so that the fluid speed a t  infinity is unity and 
the major axis of the ellipse is 2( 1 + c2). 

We are specifically interested in the neighbourhood of the nose (i.e. z = - (1 + c2), 
y = 0) when 0 < (1 - c2) < 1. Let us write 1 -c2 = 2t, so that t is the (small) thickness 
ratio of the ellipse and 

e = -t6. (82) 

On the ellipse and near the nose x + 2 = t2E2, y = 2196, and the velocity of slip round 
the ellipse is 

when 6 = O(l),  where Pt = ( 2 a - ~ ) .  From thin airfoil theory we may take K = a and 
we shall assume p > 0. 

The boundary-layer equations needed to reduce this slip velocity to zero a t  the 
ellipse are now easily obtained. We suppose, that the normal distance Y from the 
ellipse and the stream function @ are scaled with t (2v ) t  where v is the kinematic 
viscosity and arc length X on the ellipse with 2t2 so that 

X = +& 1 + 62)s + $ sinh-16. (84) 

With external velocity distribution given by (83) and with surface distance given 
by (84), the governing boundary-layer equations are solved by the Box scheme 
described in Cebeci & Bradshaw (1977). The solution procedure starts a t  = 0 with 
6 = P where 

x = x-x,, 
with X,, computed from (84) by letting ( = 8. The integration, which starts as the 
Hiemenz stagnation point flow, tends to the Blasius form on the pressure side of the 
airfoil as X - t  + 00. On the suction side X decreases and u, reaches a negative minimum 
value of - ( 1  +P2) at ( = - l/P, i.e. just past the nose, and thereafter increases again 
to - 1 as X - t  - 00 (see figure 2 ) .  Provided, therefore, that the integration does not 
breakdown at a finite value of X ,  the soIution on the suction side also takes on the 
Blasius form as X-+-co. However, if the pressure gradient parameter ,8 is strong 
enough, the solutions predict separation, where they break down. The condition is 

(85)  

For such values of P, the solution is terminated at  the separation point x, shown 
in figure 3 as a function of P. It is interesting to compare this criterion for the onset 
of separation with the experimental data provided by Gault (1955). For the N.A.C.A. 
663-018 airfoil with a leading-edge radius of curvature corresponding to t = 0.20, he 
found that incipient separation occurs when a = 7", i.e. /3 = 0.61. The most likely 
explanation for the discrepancy with (85) is that this airfoil is not exactly parabolic 
near the nose. Thus, if we define p by the position of the forward stagnation point, 
P = 1 a t  a = 7" and if we define i t  by the pressure minimum P = 1.45. A somewhat 
similar situation occurs with the modified N.A.C.A. 0010 airfoil. Here t = 0-16 and 
the corresponding values of P are 0.43,0.6 and 1.0. 

/3 > P* = 1.155. 
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FIGURE 2. Variation of u, with X for = 0.9. 
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FIGURE 3. Variation of separation point with b. 

4.3. Numerical results for the line-of-symmetry $ow 
The numerical results obtained here are in quite good agreement with the earlier 
results for finite thickness by Wang (1970) and by Hirsh & Cebeci (1977) and for 
'zero'-thickness by the asymptotic theory of 5 4.1. For the zero-thickness case, which 
we consider first, figures 4 and 5 show the variation of the longitudinal and transverse 
components of wall shear, Ui(0) and W;(O), with p for various values of a. On the 
leeward side the longitudinal component of the wall shear develops a maximum and 
a minimum at moderate, but not too large, values of a. As a increases, the peak and 
dip in the wall shear on the leeward side near the nose becomes more pronounced and 
a t  a = 41°, this component of the wall shear actually vanishes at ps  = - 1.38, ter- 
minating the computation. At larger values of a, it  vanishes nearer the nose and 
indeed formally we may expect that as a+ 90°, separation takes place at p = 0. The 
variation of ps with a is shown in figure 6. Also shown in figures 4 and 5 are the asymp- 
totic values for UA(O), Wi(0) and a = 30" both on the windward and leeward sides 
computed from (69) et seq. It is clear that the results are consistent. 

The calculations for the leeward side also indicate that in the region where UA(0) 
exhibits a maximum and a minimum, the boundary-layer thicknesses of U,, and W, 
are nearly the same. After the dip in Ui(0)  or rise in Wi(0)  (see figure 5), the crossflow 
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L 

FIUURE 4. Variation of the longitudinal component of wall shear, U:(O) for paraboloids of zero 
thickness ratio with p for various a. The dashed lines indicate the asymptotic results for a = 30". 
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FIGURE 5. Variation of the transverse component of wall shear, W;(O) for paraboloids of zero 
thickness ratio with p for various a. The dashed lines indicate the asymptotic results for a = 30". 

component develops a very thick boundary layer while the boundary thickness of the 
longitudinal component of the flow remains nearly unchanged. Figure 7 shows the 
variation of the crossflow profile w#/Z [see equation (46)] on the leeward side for 
various values of p at  a = 30'. The double structure appears to be developing quite 
strongly with the inner part asymptoting to the limit (74); the outer part is thickening 
rapidly but p is too small for us to comment with definiteness on the relevance of (76), 
(80). In  figure 8 we display the variation of the displacement thicknesses Al, A, on the 
windward and leeward sides and compare with the asymptotic theory. The agreement 
is good and we note in particuIar that A, increases rapidly a sp  decreases below ps. 

For t # 0 the numerical procedure is to solve the transformed equations, (22)-(24), 
in the neighbourhood of the nose and then a t  a convenient station of X to switch 
bsck to the equations in terms of 2 and y, equations (10)-(12). The chief results are 
displayed in figure 9 which shows, for the finite-thickness case (t = i ) ,  the variation 
of the longitudinal local skin-friction coefficient, cf, for various angles of incidence. 
These results agree quite well with those computed by Hirsh & Cebeci (1977) who 

15 FLm 97 



450 

-1.4- 

-1.0 

Ps 

-0.6 

-0.2 

T .  Cebeci, A .  K .  Khattab and K .  Stewartson 

- 

- 

- 
I I I I I I 

' P  

0.1 547 

WSIZ 

FIGURE 7. The profiles of the crossflow velocity w a t  a = 30" for various values of p :  0, the 
asymptotic forms, windward to the right and leeward to the left. The dependence of w on Z/S 
has been scaled out. 

considered only small angles of incidence and with those of Wang (1970) who con- 
sidered larger angles of incidence. The results also show, as in the zero-thickness case, 
that the peak and dip in the skin-friction coefficient on the leeward side near the nose 
becomes more pronounced with increasing angle of incidence and, the local skin- 
friction vanishes at approximately 42 degrees, indicating separation. It is remarkable 
that this result is in excellent agreement with the one computed by using the zero- 
thickness case. Further comparisons ahd calculations will be made when the solutions 
are extended off the line of symmetry for both zero- and finite-thickness cases. 
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i ::: t 
FIGURE 8. The variation of Al, A, for paraboloids of zero thickness with p 

for a = 30". The dashed lines are the asymptotic results. 
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FIQIJRE 9. The variation of the longitudinal local skin-friction coefficient, c,, with axial distance 
from the nose (Z = - 1) for a spheroid of thickness ratio f and various angles of incidence. 

5. Discussion 
The principal result of this study is to bring out the difference between the pheno- 

menon of nose-separation on thin two-dimensional and axisymmetric bodies set a t  an 
angle u to the oncoming flow. For two-dimensional bodies, or airfoils, it  first occurs 
at a -N 1-155 where t is a representative thickness parameter of the body but for axi- 
symmetrical bodies it is delayed until a N 41" no matter how small t is. Indeed from 
the earlier results at finite values of t ,  due to Wang (1974) we might expect that 
nose-separation cannot occur if a < 41' for all prolate spheroids. Care must, of course, 
be taken in interpreting these contrasting conclusions. In  two-dimensional flows we 
are essentially only concerned with separation points and nothing can be said in the 
present context about the flow in the boundary layer further downstream in view of 
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FIGURE 10. Sketch of open Separation. 

the singularity in the solution a t  separation. However, in three-dimensional boundary- 
layer studies we must consider separation lines and we have only established the 
likelihood of these lines intersecting the leeward line of symmetry 1 when a > 41". For 
a close to but less than 41", the separation lines may extend to points near the nose 
without reaching as far as 1. Thus Wang (1974) finds that when a = 30", t = $ the 
separation line extends as near as N -0.9 to the nose. He concludes that a new 
phenomenon occurs, which he terms 'open separation' having the property that the 
separation line is an envelope of limiting streamlines on both sides (figure 10). Now 
separation on 1 occurs at N +0.9 but he was only able to compute a very small 
part of the flow field on the leeward side of this separation line. It is possible that as 
a+a,(t), where a,(t) is the minimum angle of attack provoking nose-separation on 
1, the upstream end of his open separation line moves up to 1 and for a > a, the separa- 
tion line is closed once more. Further study of the region between the open separation 
line and 1 is clearly needed and the extension of the present theory to points off I may 
be the simplest way of dealing with it, since the governing equations are now free of 
irregularities and any small quantities have been rendered innocuous. 

The results obtained so far also raise some interesting questions when t < 1. For 
in the limit t + 0 one can interpret the main stream flow a t  large values of p as con- 
sisting of two components, of which the one in the cross-plane of the body corresponds 
to the flow of a fluid past a circular cylinder of very slowly varying radius and uniform 
a t  large distances from it. The other component is uniform and directed along the 
normals to this cross-plane. The situation is very like that for a yawed infinite wing 
in fact. The associated boundary layers on the line of symmetry have an asymptotic 
structure which supports this view and are consistent with their numerical solution 
a t  finite p .  Hence in view of the independence principle for yawed infinite wings 
(Jones 1947) we should be able to integrate the crossflow equations (for w) inde- 
pendently of that for u when p 1 and since these lead to separation a t  8 N 105' 
(Cebeci & Bradshaw 1977) this line should be the asymptote of Wang's open separation 
line when a < aJ0) and lpl -+a. 

However, we are inclined to be cautious at present. For the singularity in the 
crossflow boundary layer at separation prevents the above asymptotic solution from 
being continued to larger values of 8 whereas we know from the leeward line of sym- 
metry solution that one can be found at  8 = T for all p .  Further the use made of the 
Proudman-Johnson theory in 3 4.1 suggests that there is an analogy between the 
role of p in the present theory and of r ,  the time, in unsteady two-dimensional theory. 
There has been some controversy in the past about the properties of unsteady boundary 
layers on circular cylinders, particularly as to whether they can develop singularities 
at finite times. The present position is that they remain smooth for T < 1.4 (e.g. 
Cebeci 1979) although growing rapidly downstream of separation, exponentially so 



On nose separation 463 

near the rear-stagnation point. Cebeci argues, and we concur, that the solution is free 
of singularities for all time (but see Wang 1979). 

The main differences between unsteady boundary layers and steady boundary layers 
with t = 0 occur near the body, when 7 N 1 and u,, is not sensibly constant so that the 
analogy fails, and near the nose ( p  N 1) when in addition separation occurs on 1 if 
a > a,(O). If we assume that the analogy qualitatively holds provided a < q ( 0 )  we 
may infer that the flow is smooth over the nose region for all finite p but that beyond 
a certain line, roughly given by the reversal of the crossflow component of the skin 
friction the crossflow boundary -layer thickness rapidly increases in thickness with p .  
The failure of the analogy when 7 N 1 means that, not withstanding the claimed 
smoothness of the unsteady solution for all 7 ,  there may still exist an open separation 
line or even a separation tongue with one or both ends asymptoting to 8 21 105" as 

This discussion seems to have relevance to yawed wings which are not axisym- 
metric. The independence principle applies here too and would suggest that the 
boundary solution must be terminated at the separation of the crossflow. We now 
wonder whether this is necessarily the case. Provided separation of the boundary- 
layer component in the spanwise direction has not occurred near the upstream wing- 
tip and the distance from the tip is finite, it  may be possible to carry out the integration 
beyond the crossflow reversal right up to the trailing edge. Of course, the crossflow 
boundary layer then increases in thickness rapidly with p but the boundary-layer 
assumptions axe still valid so that we would be able, without any contradictions, to 
advance the integration beyond the separation line in the form it is understood a t  
present. The avoidance of separation near the wing-tip might, however, not be easy 
in practice, especially since an unyawed wing corresponds essentially to  setting a = 90'. 

A final question raised by these studies concerns the flow near the nose of smooth 
three-dimensional bodies, for example thin ellipsoids at  incidence. If the mainstream 
is symmetric about a plane of symmetry of the ellipsoid, then the boundary layer on 
one of the lines of symmetry can be computed using similar methods to those of this 
report and indeed our present results can be regarded as limiting cases accordingly 
as the cross-section of the ellipsoid is a circle ($  4.1) or has an infinite major axis 
( 3  4.2). Presumably the critical angle for nose separation varies from 41' to 0" as the 
eccentricity of the cross-section increases from 0 to 1.  It would be interesting to know 
how close we must be to a two-dimensional form before separation occurs at relatively 
small angles of attack and indeed what is the effect of an asymmetric mainstream 
so that there is no line of symmetry along which the integration can be carried out 
independently of the rest of the flow field. 
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